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bstract

We examine the effect of dissipation on the laser control of a process that transforms a state into a superposed state. We consider a two-dimensional
ouble well of a single potential energy surface. In the context of reactivity, the objective of the control is the localization in a given well, for instance
he creation of an enantiomeric form whereas for quantum gates, this control corresponds to one of the transformation of the Hadamard gate. The
nvironment is either modelled by coupling few harmonic oscillators (up to five) to the system or by an effective interaction with an Ohmic bath.

n the discrete case, dynamics is carried out exactly by using the coupled harmonic adiabatic channels. In the continuous case, Markovian and
on-Markovian dynamics are considered. We compare two laser control strategies: the Stimulated Raman Adiabatic Passage (STIRAP) method
nd the optimal control theory. Analytical estimations for the control by adiabatic passage in a Markovian environment are also derived.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Controllability of wave packets in a double-well potential has
een largely explored since the early days of laser-driven dynam-
cs and remains nowadays an attractive topic [1]. Symmetric
r asymmetric double wells are ubiquitous in chemical physics
nd can be encountered in the context of hydrogen tunneling,
lectron transfer and isomerization or enantiomer separation.
ccording to the barrier height and the corresponding tunneling

ime, the control aims at transferring a wave packet from one
ell to the other [2–11] or at localizing a delocalized state in
given well [12–15]. A large number of model systems have

lready been investigated, we can cite for example the selective
reparation of enantiomer in H3POSH [13], the intramolec-
lar hydrogen transfer in malonalhehyde [2] and thioacetone
5], the Cope rearrangement in semibullvalene [3], the control
f molecular chirality in difluoro[c]phenanthrene [10] and the

somerization of hydrogen cyanide [16–21] or methoxy radi-
al [31]. Recently, the exciting new field of molecular quantum
omputing has emerged and vibrational states have been pro-
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osed to be a potential candidate for implementing quantum
ubits [22–28]. Vibrational states of a double-well system have
een used for that purpose [29–31]. The goal of quantum con-
rol is to design laser pulses able to drive a quantum system
owards a specified target state whereas in the context of quantum
omputation, the goal is the implementation of unitary transfor-
ations acting on different inputs. This latter control is thus
ore challenging due to multiple initial states and correspond-

ng targets and more demanding about the performance of the
ontrol.

In this paper, we propose to revisit the control of a double-
ell system by gathering two different strategies: the Stimulated
aman Adiabatic Passage (STIRAP) scheme and the Optimal
ontrol Theory (OCT). We address the fundamental problem of

he control of this system when is coupled with an environment.
e do not consider non-adiabatic interactions between differ-

nt energy surfaces in this work. We compare the efficiency of
TIRAP and OCT by analyzing the structure and the robust-
ess of the pulses obtained and their characteristics (intensity,
uration) needed to achieve different objectives. We choose a

wo-dimensional (2D) potential energy surface modeling the

igration of a hydrogen atom around a CO bond (isomeriza-
ion H3CO → H2COH). This is a benchmark case for a surface
resenting three wells connected by a bifurcating region. We

mailto:mdesoute@lcp.u-psud.fr
dx.doi.org/10.1016/j.jphotochem.2006.12.005
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otice that this 2D surface exhibits symmetric and asymmet-
ic double-wells allowing various wave packet controls. The
ynamically active coordinates are two angles (spherical coor-
inates of the migrating atom with respect to the middle of the
ond). It is clear that consideration of other degrees of free-
om or more generally coupling with an environment will be
rucial in laser driven dynamics. The point is to increase the
umber of dynamically active degrees of freedom or to sim-
late dynamics in condensed phase by efficient and realistic
issipative models [32,33]. In a first approach, we consider
he coupling of the active modes with a small number of bath
scillators. Dynamics is treated in the framework of coupled
diabatic channels which allow considering exactly up to seven
egrees of freedom. It should be also possible to use alternative
pproaches, for example the promising OCT-MCTDH (Multi-
onfiguration Time-Dependent Hartree) method [34] which can
ake into account a larger number of oscillators [35,36], par-
icularly with the G-MCTDH extension which uses Gaussian
ave packets for some modes [37] or the surrogate Hamilto-
ian method [38]. In a second step, we simulate the remaining
ntra-molecular modes and the degrees of freedom of the sur-
ounding environment by a bath with an Ohmic spectral density.

e consider the control of a non-Markovian dynamics by an
fficient extension [39] of the Rabitz iterative methods used to
olve OCT equations in the density matrix formulation [40]. We
eglect correlation between dissipation and laser-driven dynam-
cs [41,42]. Alternative methods could also be used to treat the
issipative memory kernel [43]. Another approach using STI-
AP scheme [44,45] has been implemented in the case of a
arkovian dynamics [46–49]. We do not use STIRAP strat-

gy in a purely adiabatic regime which requires pulses of large
uration. In order to reduce this time, we consider the solution
iven by the adiabatic equations as a trial field depending on
everal parameters as the Rabi frequencies. In a second step,
e optimize the different parameters to keep efficient control.
ote that OCT can be viewed as a control scheme optimizing a

aser field with an infinity of degrees of freedom, which justi-
es the comparison between the two methods. Finally, we point
ut that different mixed quantum-classical approaches based on
he hydrodynamical description [50] or on Wigner distribution
51] are promising issues for laser driven dynamics of complex
ystems.

. Dissipative dynamics

The total Hamiltonian (system + bath) can be written as

ˆ = ĤND
0 + ĤField +

Nb∑
j

⎡
⎣ P̂2

j

2j
+ 1

2
ω2
j

(
Qj − cjf (q)

ω2
j

)2
⎤
⎦

(1)
here ĤND
0 is here a 2D double-well Hamiltonian, ĤField =

�μ �E(t) and q are the active coordinates coupled to the bath.
his Hamiltonian contains a bath Hamiltonian expressed in mass

t
u
w
s
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eighted coordinates

ˆ B =
Nb∑
j

P̂2
j

2j
+ 1

2
ω2
jQ

2
j (2)

nd a system Hamiltonian which includes a renormalization term

ˆ S = ĤND
0 + ĤField + Ĥrenorm (3)

ith

ˆ renorm = 1

2
f (q)2

Nb∑
j=1

c2
j

ω2
j

(4)

This leads to a system bath coupling of the form

ˆ SB = −f (q)
Nb∑
j

cjQj (5)

We compare two situations: one in which the system is cou-
led with few modes (up to five) and another in which it is
oupled to a continuous distribution of oscillators. In the latter
ase, the coupling constants are characterized by the following
ath spectral density (Caldeira Legett model [52])

(ω) = π

2

Nb∑
j

c2
j

ωj
δ(ω − ωj) and J(−ω) = −J(ω). (6)

his density is approximated by an Ohmic function

(ω) = λ2 ω

ωc
e−|ω|/ωc (7)

here ωc is the reference frequency corresponding to the max-
mum of the function.

In the case of a finite number of oscillators, the bath spectral
ensity is discretized by

2
j = 2

π
ωj
J(ωj)

d(ωj)
(8)

here d(ω) is the frequency density which is estimated by

(ω) = Nb

ωc

e−ω/ωc
1 − e−ωm/ωc , (9)

m being the largest frequency of the bath [35].
In the case of an infinite ensemble of oscillators, the sys-

em density matrix is defined by ρ(t) = TrBσS⊕B(t) where TrB is
he partial trace over the bath degrees of freedom. The reduced
volution equation for ρ(t) is obtained in the framework of the
rojector formalism of Zwanzig–Nakajima [32,33,53]. Differ-
nt approximations are made to derive the operational equations.
nitial correlation between the system and bath degrees of free-
om is neglected, i.e. the initial density matrix factorizes as
S⊕B(t = 0) = ρ(t = 0)ρeq

B and the bath is assumed to be in

hermal equilibrium. Initial correlation could be introduced by
sing a more sophisticated treatment [54]. As mentioned above,
e also neglect the correlation between the laser and the dis-

ipation dynamics [41,42]. The second order expansion of the
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Table 1
Half-live time τ1/2 in fs and the time τmax for which C(t) (Eq. (12)) vanishes for the two reference frequencies (Eq. (7)) and temperatures used in the simulations

ωc = 1000 cm−1 ωc = 400 cm−1 ωc = 100 cm−1
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nates θ ∈ [0,π] andφ∈ [−π,π] which are the spherical angles of
the migrating atom H with respect to the center of the CO bond.
This three-well region is an interesting pinball topography which
suggests different control processes. The Hamiltonian is given
= 298 K τ1/2 = 3, τmax = 50
= 100 K τ1/2 = 2.8, τmax = 47

xact Zwanzig–Nakajima reduced equation in the Schrödinger
epresentation reads [3,32]

∂ρkl(t)

∂t
= −i εk − εl

h̄
ρkl(t) + i

h̄

∑
j

Ej(t)[μj, ρ(t)]
kl

− 1

h̄2 [A,G(t)]kl (10)

ith a memory

kl(t) =
∫ t

0
dτ e−iωklτ{C(τ)[Aρ(t − τ)]kl

−C(−τ)[ρ(t − τ)A]kl} (11)

here A is the matrix of the function of the active coordinate
(q) (Eq. (4)). The bath correlation function is given by [41]

(t ≥ 0) = 1

π

∫ ∞

−∞
dω e−iωt J(ω)

1 − e−βω and C(−t) = C∗(t).

(12)

here β = 1/kT is the Boltzmann factor. The coupling strength
ith the bath λ finally appears in the memory as λ2. The Markov

pproximation consists in replacing the upper born of integration
n Eq. (11) by t = ∞ and ρ(t − τ) by ρ(t). Different approxima-
ions such as a rotating wave approximation then lead to the
edfield [55] or the Lindblad form [32,33,56,57]. We recall that

he Markovian regime arises when the correlation time of the
ath τB is smaller than the typical time scale τS over which the
ystem varies appreciably. We choose the Lindblad form because
t can be shown that the density matrix of the system ρ remains
positive semi-definite Hermitian operator having Tr[ρ] = 1 and
r[ρ2] ≤ 1. Here, the Lindblad equations take the form:

ρ̇kl = −i εk − εl

h̄
+ i

h̄

∑
j

Ej(t)[μj, ρ(t)]
kl

+
∑
m

− 1

2
[γ(ωmk)|Amk|2 + γ(ωml)|Aml|2]ρkl,

˙kk = + i

h̄

∑
j

Ej(t)[μj, ρ(t)]
kk

+
∑
m

[γ(ωkm)|Akm|2ρmm − γ(ωmk)|Amk|2ρkk] (13)

here

(ω) = J(ω)
(14)
1 − e−βω

In this paper, we examine the effect of the system-bath inter-
ction on the laser control. We vary the reference frequency ωc

Eq. (7)) and the temperature (T = 298 and 100 K) and therefore

F
i
T
o
0

τ1/2 = 9, τmax = 200 τ1/2 = 50, τmax = 500
τ1/2 = 7, τmax = 80 τ1/2 = 38, τmax = 400

he correlation function C(t) (Eq. (12)) which determines the
emory time. The characteristic time scale of the bath τB may

e estimated by the half-life time τ1/2 and also by the time τmax
or which C(t) vanishes. The two τ1/2 and τmax times are given
n fs in Table 1.

We summarize the three relevant time scales. τB is typically
f the order of 10 fs, τS is about 50 fs when it is estimated by
typical frequency of 600 cm−1 but the tunneling time reaches
0 ps. The relaxation time τR is roughly given by 1/λ2, i.e. about
ps for most of our examples using λ= 2 × 10−3. We will con-

ider different situations for which non-Markovian dynamics is
ustified because τB is not smaller than τS.

. Model

The model represented in Fig. 1 is a bifurcating region in
he ground potential energy surface of a polyatomic system
isomerization H3CO → H2COH). Such a region contains three
on-equivalent wells. A deep reactant well is connected to a sym-
etric double-well corresponding to two rotational conformers
and P′ (see Fig. 1). The transfer from the reactant well to the

ouble P and P′ basin is well described by two active coordi-
ig. 1. Isoenergy contours (in eV) in the model potential energy surface of the
somerization H3CO → H2COH as a function of two active angular coordinates.
he zero of energy is at the bottom of the product well (P or P′); the energies
f the reactive well and of the transition states, TS1 and TS2, are respectively:
.181 eV, 1.854 eV, 0.195 eV.
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ˆ 2D = − h̄2

2Iθ

(
∂2

∂θ2 + cotan θ
∂

∂θ

)

− h̄2

2Iφ

1

sin2 θ

∂2

∂φ2 + V (θ, φ) (15)

here Euclidian normalization convention is adopted. The
nertia moments are Iθ = 6160 au and Iφ = 4430 au. The model
otential is calibrated on an ab initio computation at the QCISD
evel [58]. Analytical expressions of the potential and of the
ipolar momentum surfaces are given respectively in Refs.
58] and [31]. In the CS geometry (φ = 0), the barrier height
t the first transition state TS1 from the reactant is 1.673 eV
13494 cm−1). The barrier for the internal rotation at TS2 is
.195 eV (1573 cm−1).

We focus on the symmetric double well region. In this
xample, we consider the first two delocalized states in the dou-
le well. The vibrational quantum number for the θ oscillator
emains equal to zero. The states of parity even and odd should
e denoted as |0+,0〉 and |0−,0〉 but, they will be simply written
s |0+〉 and |0−〉. The splitting of the first level |0+〉 − |0−〉 is
.3 × 10−5 eV (0.35 cm−1). This corresponds to a rather long
unneling time of about 48 ps much longer than the duration of
he pulses used in the control. The target of the control is the
ocalization of the ground delocalized state, |0+〉, into one of the
ell P or P′ (see Fig. 1) which corresponds to a localized wave

unction |L〉 or |R〉:

L 〉 = |0+〉 + |0−〉√
2

|R 〉 = |0+〉 − |0−〉√
2

. (16)

The goal is thus the creation of a superposed state and
herefore of a coherence between the two levels. We adopt a
oupling function (Eq. (5)) of the form f(q) = cos(φ) + sin(φ).
he molecule is assumed to be aligned in the laboratory axis

rame. �ez is directed along the CO axis. We use two polariza-
ion directions �ex and �ey. The corresponding dipolar functions

x(θ,φ) and μy(θ,φ) are symmetrical and antisymmetrical func-
ions, respectively.

. STIRAP and Markovian dissipation

The control strategy which is used in this section is based on
timulated Raman Adiabatic Passage or extension of this tech-
ique such as f-STIRAP (see [44,45] and references therein for
complete overview). STIRAP is a process involving a coun-

erintuitive sequence of two pulses in a three-level system in
hich the field of the Stokes pulse precedes and overlaps the
eld of the pump pulse. The f-STIRAP strategy differs from the
tirap one by the fact that the pump and the Stokes pulses have

he same amplitude at the end of the field. The idea which is
t the basis of most of adiabatic schemes is to follow an adia-
atic state corresponding respectively to the initial state when the

eld is switched on and to the target state when it is switched off.
uch techniques are particularly efficient to achieve population

ransfer but can also be used to implement quantum gates [31].
ome investigations have already been performed in dissipative

t
[
a
v
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uantum systems [46–49]. All these studies have pointed out
he negative effect of dissipation on the efficiency of STIRAP
echniques.

In this section, we consider the 2D model and the influence of
Markovian dissipative bath upon the controlled dynamics by f-
TIRAP. We limit our study to the Markovian dynamics in order

o discuss the control properties from a numerical and analytical
oint of view. Indeed, the simple form of Markovian mas-
er equations allows the derivation of analytical formulas. The
echnical aspects of the analytical calculations are reported in
ppendix A. The behaviour of the control under non-Markovian
issipation is expected to be similar but is not treated in this
aper.

We now analyse the processes |0+〉 → |L〉 and |0+〉 → |R〉
hich will allow us to detail the different steps of the control

trategy (see also Ref. [31] for a complete description). Other
ontrol schemes can be analysed with the same kind of argu-
ents. We first select an adiabatic technique adapted to the

tructure of the energy levels and to the dipolar matrix elements.
e consider for that purpose the three levels |0+〉, |0−〉 and

2+〉. Other set of levels could be selected. Taking into account
he particular symmetry of the dipole moment in this basis, we
hoose the f-STIRAP strategy. To be more precise, we recall
or instance that μx only couples the levels |0+〉 and |2+〉, the
ransition |0−〉 to |2+〉 being forbidden. The f-STIRAP strategy
iffers from the Stirap one by the fact that the pump and the
tokes pulses have the same amplitude at the end of the field.
e assume that the two pulses are Gaussian with the frequency
= E2+ − (1/2)(E0+ + E0− ) and that the Rabi frequencies are

he same for the two pulses. The scheme can be summarized as
ollows

here the Stokes pulse is polarized along the �ey direction and
he pump pulse along the �ex one. Simple algebra shows that the
diabatic state which has to be considered here can be written
n the following form

ψ0(t)〉 = 1√
Ω2
x +Ω2

y

(Ωy|0+〉 −Ωx|0−〉), (17)

he two Rabi frequencies fulfilling the conditions

lim→−∞
Ωx

Ωy
= 0 and lim

t→+∞
Ωx

Ωy
= ±1 (18)

here Ωx = |μ(0+/2+)
x Ex| and Ωy = |μ(0−/2+)

y Ey|. One

hen deduces that |ψ0(−∞)〉 = 0+〉 and |ψ0(+∞)〉 = (1/

√
2)

|0+〉 ∓ |0−〉] which corresponds to a perfect transfer in the
diabatic limit. However, this adiabatic limit requires pulses of
ery long duration. A standard condition is for instanceΩtf � 1
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here Ω is the peak Rabi frequency and tf the duration of the
ulse.

It is clear that this long duration is not compatible with dissi-
ation since the control cannot cancel the effect of dissipation.
precise mathematical description of this point is given by the

otion of controllability [59,60] but goes beyond the scope of
his paper. One therefore concludes that the target state cannot
e reached exactly in the dissipative case even in the adiabatic
imit. The idea is then to reduce the duration of the overall field.
n order to keep the efficiency of the control as high as possible,
e consider the adiabatic pulse as a laser field depending on

everal parameters (Rabi frequencies, delay between the pulses)
nd we optimize these parameters for a given duration. The opti-
ization has been done on a grid to preserve as much as possible

he robustness of the process.
Figs. 2 and 3 illustrate the results of applying the f-STIRAP

trategy. Very good localization is obtained for a parameter λ

ower than 1 × 10−3, this localization decreasing smoothly as λ
ncreases. The localization is close to 0.99 is the non-dissipative
ase [31]. The total duration of the process is here a crucial

ig. 2. Dynamics controlled by f-STIRAP strategy for the preparation of the
uperposed state |R〉. Panels (a) and (b) show, respectively, the evolution of the
ocalization in the right well for different values of λ and the Rabi frequencies
f the different pulses. Rabi frequencies are in atomic units. The solid line of
anel (b) corresponds to the Stokes pulse and the dashed one to the pump pulse.
he total duration of the process is of the order of 4.5 ps.

Fig. 3. Same as Fig. 2. Panels (a) and (b) represent the evolution of populations in
the Hamiltonian eigenbasis and in the superposed states |L〉 and |R〉. Populations
of other vibrational states remain small during the process. The dashed lines of
panels (b) and (c) depict the results of analytical calculations (see text). The total
duration of the pulse is of the order of 20 ps.
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arameter and must be of the same order of the typical decay
ime induced by the dissipation. This latter time is proportional
o 1/λ2.

Fig. 3 shows the excellent agreement between analytical and
umerical calculations for the description of the evolution of
r[ρ2] (panel (c)) and of tr[ρ(t)ρR] (panel (b)). Using equations
f Appendix A, it can be shown that

r[ρ(t)ρL] = 1

4
− ΩxΩy

Ω2 +
(

1

2
+ 3

ΩxΩy

Ω2

)
ρ00(t) (19)

here ρ00(t) is given by Eq. (A12). The analysis of Eq. (19)
hows that the localization roughly decreases exponentially with
and the duration of the process. In the case where the two Rabi

requencies have the same maximum and the same shape, one
ees that the localization is independent of this maximum. In
he regime described by the analytical calculations, an increase
f the Rabi frequencies does not improve the efficiency of the
ontrol.

The robustness of the strategies has been checked against
wo parameters, the time delay between successive pulses and
he peak Rabi frequency, and for two different values of λ. This
oint is shown in Fig. 4. In each case, a satisfactory robustness is
chieved around the maximum of localization. This maximum
ecreases with the dissipation but the range of robustness seems
ot affected. We also notice a shifting of the white region towards
maller delays as λ increases whereas this region does not move
long the vertical axis. This confirms the idea that an efficient
trategy consists in reaching as quickly as possible the target state
n order to avoid the negative effect of dissipation. As mentioned
bove, this point is also justified by the analytical calculations.

. Optimal control

We compare the role of the coupling with a discrete or con-
inuous ensemble of oscillators. In the first case, OCT is applied
n the total Hilbert space (system + bath) by propagating the
ave packet with the coupled harmonic adiabatic channels. The

oupled bath modes are thus exactly taken into account. The
ontinuous case is treated in Liouville space with a Markovian
r non-Markovian master equation. We first summarize the tech-
ical points of the implementation of OCT in both cases and we
ext gather the results.

.1. OCT with coupled harmonic adiabatic channels

Different monotonically convergent algorithms for solving
ptimal control problems in the Hilbert space have been pro-
osed. The objective functional can be defined in different
anners [61,62] which are strongly connected [63]. We choose

he functional which decouples the boundary conditions for the
nitial wave packet and the Lagrange multiplier [61] (functional
alled of type I in the recent analysis [63])
= |〈ψi(tf )|φf 〉|2 − α

∫ tf

0
E2(t) dt

− 2�e
[∫ tf

0
〈ψi(t)|ψf (t)〉〈ψf (t)|∂t − Ĥ |ψi(t)〉 dt

]
(20)

w
e
s
b
l

he overall field. Rabi frequency and delay are in atomic units. The upper
nd the lower part of the figure correspond, respectively, to λ= 5 × 10−4 and
= 2 × 10−3.

The objective yield is measured by O(tf) = |〈ψi(tf)|φf〉|2. The
rocedure to maximize the cost functional under constraint is
escribed in details in the literature [64]. One obtains three
oupled equations: the Schrödinger equation for |ψ(t)〉 with
n initial condition |ψi(t = 0) = |φi〉 (forward propagation), the
chrödinger equation for the Lagrange multiplier |ψf(t)〉 with a
nal target condition |ψf(tf)〉 = |φf〉 (backward propagation) and
n equation for each component of the optimal field (here Ex(t)
nd Ey(t))

j(t) = −
(

1

h̄α

)
�m[〈ψi(t)|ψf (t)〉〈ψf (t)|μj|ψi(t)〉] (21)

here α is a positive penalty factor which weights the influ-

nce of the laser fluence. An experimental switching function
(t) = sin2(πt/tf) is usually introduced [64], α is then replaced
y α→α/s(t). The equations are solved by an iterative formu-
ation [61] and we use the improvement proposed in Ref. [65].
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t each iteration, the field is given by E(k)
j = E

(k−1)
j +�E

(k)
j

here �E(k)
j is calculated by Eq. (21).

The propagation is carried out by the closed coupled equa-
ions in the adiabatic basis set, which is in this case a harmonic
asis set. Indeed, the separation between the active coordi-
ates, q = [θ, φ], and the bath modes, Q = [Q1, . . ., QNb], leads
aturally to an adiabatic separation [66–75] of the basis set
nto an active part, ϕI(q), and a bath one, χU(Q;q). There-
ore, the time-dependent wave function can be expressed as
ollows:

(q,Q, t) =
∑
I,U

CI,U (t) × ϕI (q) × χU (Q; q)

The χU(Q;q) basis functions depend parametrically on
he active coordinates and they can be viewed as adiabatic
hannels along the active coordinates. They are also the eigen-
unctions of the Nb-Harmonic Hamiltonian,

∑Nb
j [((P̂2

j /2) +
(1/2)ω2

j ))(Qj − (cjf (q)/ω2
j ))]. Thus, the χU(Q;q) basis func-

ions are simply the product of Nb 1D-Harmonic eigenfunctions
nd are labeled by means of the excitations in the Nb bath
ormal modes, jU. Those retained go from the ground state
nwards to some maximal excitations, Maxexcit or more pre-
isely,

∑Nb
j jU ≤ Maxexcit. The values of cj are obtained using

q. (8) (see Ref. [35]) where the frequency ωm is the largest
alue among the Nb harmonic frequencies.

After integration over the bath modes, the total Hamiltonian
an be rewritten as a matrix in (U,V) of operators acting only

n the active variables, Ĥ
eff
UV(q, ∂q) or as a set of coupled effec-

ive Hamiltonians. This representation is strictly equivalent to
he initial Hamiltonian (Eq. (1)), provided the bath basis set is
omplete [58,74]. Since the coupling between the active coor-
inates and the bath modes is present only in the potential, the
eneral expressions of the effective operators are simplified as
ollows:

ˆ eff
UV(q, ∂q) = ĤND

0 δUV +
ND∑
i=1

f i1,UV(q)∂i +�V eff
UV(q) (22)

Furthermore, the main contribution of the diagonal value of
he �V eff

UV(q) matrix is mainly the harmonic energy of the Nb-
armonic oscillators. The diagonal correction, the off-diagonal
erm of �V eff

UV(q) and f i1,UV(q) matrices are due to the kinetic
ontribution associated with the active coordinates of the adia-
atic basis functions.

In the present study, the choice of the initial, |φi〉, and the tar-
et, |φf〉, wave packets is fundamental fundamental in order to
ompare the results with Markonvian and non-Markovian prop-
gation. Indeed, for the last two propagation schemes, the initial
nd the target wave packets are built with the spectral basis-set
f ĤND

0 without bath contribution. |φi〉 is the ground state, |0+〉

nd |φf〉 is the sum of the ground state and the first excited state,
1/

√
2)(|0+〉 + |0−〉). For the coupled adiabatic channels, we

ave chosen the same wave packets for the active contribution
nd the ground state of the harmonic bath basis function, |χ0〉

b
M
k
a

tobiology A: Chemistry 190 (2007) 359–371 365

U = 0):

φi〉 = |0+〉|χ0〉 |φf〉 = 1√
2

(|0+〉 + |0−〉)|χ0〉

The propagation of the wave packets has been obtained
hrough the Taylor expansion of the evolution operator [76,77]
ith an order (here fifth order), which ensures the time reversibil-

ty and norm conservation of wave packet.
The primary basis sets are the normalized spherical harmon-

cs and the number of spectral basis functions of ĤND
0 is 30.

ll the integrals are performed numerically with the help of a
aussian quadrature scheme adapted to the basis. The integrals

nd the propagations have been performed with the ElVibRot
rogram [78,74].

The number of bath modes, Nb, used here is 5. This method
s also named 2 + 5D. The values of ωj are equal to: 133.3,
66.6, 400, 533.3, 666.6 cm−1. Note that the value of the param-
ter Maxexcit is large enough to ensure the convergence of the
ropagation with the optimal electric field. The variation of
he objective of quantum control is around 0.1 or 0.2% when

axexcit increases by one. Moreover, Maxexcit depends on the
oupling, cj or more precisely on λ. The optimal values of
axexcit are, respectively, 2 and 3 for a parameter λ equal to
× 10−4 and 2 × 10−3. With the N + 5D model, the number of
armonic adiabatic channels are, respectively 21 and 56 when
axexcit = 2 or 3.

.2. OCT with Markovian and non-Markovian dissipation

We use the density matrix approach suited to include coupling
ith a bath. Different approaches have been proposed [79,80].
e adopt here a monotonically convergent algorithms adapted

or the Liouville space [40,63]. The objective is the maximiza-
ion of O(tf ) = |〈〈W†|ρ(tf )〉〉|2 where W is the target operator.
A different choice which minimizes the discrepancy Tr (D2)
here D = ρ(tf) − W has been recently suggested for dissipative

ystems [81].) According to our procedure in Hilbert space, we
dopt the functional which decouples the boundary conditions
63]. The optimization procedure of the chosen functional leads
o coupled equations of motion for the density matrix |ρ(t)〉〉 (in
uperoperator notation), the Lagrange multiplier |Ξ(t)〉〉 (which
mposes that the Liouville equation remains fulfilled at any time)
nd the laser field E(t). |ρ(t)〉〉 is propagated forwards with an
nitial condition while |Ξ(t)〉〉 is propagated backwards with a
nal condition. In this formulation, each component of the field

s given by

j(t) = −�m{〈〈ρ(t)|Ξ(t)〉〉〈〈Ξ(t)|Mj|ρ(t)〉〉}
α

(23)

here 〈〈A†|B〉〉 = Tr(AB), Mj|ρ(t)〉〉 = |μjρ(t)〉〉 − |ρ(t)μj〉〉 and α
s the penalty factor, including the s(t) function. The field is

uilt iteratively by a convergent algorithm [40] adapted to non-
arkovian dissipation [39]. If we design by Γ (t) the memory

ernel given by Eqs. (10) and (11), the forward propagation with
n initial condition and the backward propagation with a final
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ondition satisfy the following equations

∂

∂t
||ρ(t)〉〉 = − i

h̄

⎡
⎣LnD

0 −
∑
j

MjEj(t)

⎤
⎦ ||ρ(t)〉〉

−
∫ t

0
dτ Γ (t − τ)||ρ(τ)〉〉 (24)

∂

∂t
||Ξ(t)〉〉 = − i

h̄

⎡
⎣LnD

0 −
∑
j

MjEj(t)

⎤
⎦ ||Ξ(t)〉〉

+
∫ tf

t

dτ Γ (τ − t)||Ξ(τ)〉〉 (25)

here LnD
0 |ρ(t)〉〉 = |ĤnD

0 ρ(t)〉〉 − |ρ(t)ĤnD
0 〉〉. The bath corre-

ation function appearing in Eqs. (10) and (11) is computed by
q. (12) for different frequencies ωc and temperatures.

.3. Results

In each example, the zero-order field is the one optimized
ithout dissipation in the wave packet formalism. The objec-

ive yield was then 99.999%. This procedure is efficient for two
ain reasons. First, the OCT algorithm in presence of dissipation

onverges very fast for different baths and in most cases, the con-
ergence is always achieved in about 20 iterations (see Table 2).
econd, starting with the same zero-order field enforces the algo-
ithm to converge towards the same type of solutions for the
ifferent strategies in the Hilbert (cHAC) or Liouville space. We
ecall that two polarizations and therefore two pulses Ex(t) and
y(t) are used. The first one has a duration equal to tf1 = 0.5 ps.
his is the shortest duration which avoids a too strong field, the

imit being fixed at |Emax| = 0.05 au (1 au = 5.14 109 V cm−1).
or the second pulse, we have tf2 = 4.5 ps which is the short-
st time reached by STIRAP scheme. The two pulse durations
ust be compared with the characteristic time of the field free

ynamics (we recall that the tunneling time is 48 ps and the typ-
cal decay time of the dissipation without field τR is of the order
f 1/�2, i.e. τR ≈ 6 ps for λ= 2 × 10−3). They must be also com-

ared with the correlation time of bath to foresee the role of the
emory effect (see Table 1). tf1 is of the order of magnitude of

ome correlation times so this corresponds to an intermediate
emory case. tf 2 is larger than the correlation times, the situa-

d
M

|

able 2
bjective yield O(itc) = |〈〈W†|ρitc(tf)〉〉|2 after different iterations for the short pulse t

T (K)/λ/ωc (cm−1)

298/5 × 10−4/400 298/2 × 10−3/400

2 + 5Da Mara N.Mara 2 + 5Da Mara

(0) % 98.4 99.4 99.4 90.7 94.5
(1) % 99.1 99.6 99.6 96.5 94.7
(itc) % 99.6 99.6 99.6 97.9 94.7

tc 20 20 20 20 20

is the system-bath coupling and ωc is the reference frequency of the Ohmic spectra
a Model.
tobiology A: Chemistry 190 (2007) 359–371

ion is of short memory and Markovian dynamics is expected to
e sufficient.

.3.1. Short pulse
Table 2 gathers the objective yields obtained by cHAC,

arkovian and non-Markovian dynamics with different baths
or the first short pulse of duration tf1. We give the objective yield
ith the zero-order field O(0) (the optimal field without dissipa-

ion) and after the first iteration O(1). This confirms the quality
f the zero-order field. O(itc) gives the final performance and the
umber itc of required iterations. One observes that for the weak
oupling λ= 5 × 10−4 each method converges easily because
he performance index is already very high with the zero-order
eld. We focus now on the case with a coupling λ= 2 × 10−3

hich is the maximum value ensuring convergence of the cHAC
ethod with the chosen basis set. cHAC with (2 + 5)D starts with

he smallest yield but succeeds in reaching a good performance.
ue to dissipation, both Markovian and non-Markovian dynam-

cs do not reach the objective yield with 100% efficiency. As
an be expected for the pulse in the intermediary memory case,
he results are not the same for Markovian and non-Markovian
ynamics but they remain of the same order of magnitude. Dis-
ipation remains weak during the pulse duration tf1 but memory
ffects are not completely negligible mainly for ωc = 100 cm−1.
n that case, τ1/2 = 50 fs and τmax = 500 fs which is of the order
f tf1 = 500 fs.

We now give some details for the case with λ= 2 × 10−3,
c = 400 cm−1, T = 298 K and tf1. Fig. 5 show the two compo-
ents Ex(t) and Ey(t) of the optimal field obtained by cHAC,
arkov and non-Markovian dissipation.
The zero order Ex(t) field is very simple and mainly formed

y a half cycle pulse with a shape corresponding to the s(t)
unction. The transfer of population is realized by the short half
ulse of the Ey(t) component [31]. The action of the Ex(t) field
oughly corresponds to a Stark effect. At the maximum of the
ulse, the laser field adds an effective potential which strongly
ecreases the barrier of the energy landscape. In this example,
he barrier height is pulled down of about 75%. One observes
hat the fields keep the same shape when dissipation occurs. A

anifestation of the memory effect can be seen in the pulse

uration tf1 but the discrepancy remains very small between
arkovian and non-Markovian dynamics.
Fig. 6 give the evolution of the population in the |0+〉and

0−〉 states and the absolute value of the coherence |ρ0+,0− (t)|

f1 = 500 fs

100/2 × 10−3/400 298/2 × 10−3/100

N.Mara Mara N.Mara Mara N.Mara

94.3 97.6 96.9 82.8 89.7
94.6 97.8 97.2 83.0 90.1
95.3 97.8 97.3 83.1 94.4
20 20 20 20 20

l function (Eq. (7)).
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ig. 5. OCT field Ex(t) and Ey(t) for the 2D case with λ= 2 × 10−3, ωc = 400 cm

f the superposed state. As can be expected, the coherence is
ore sensitive to the dissipation effect than the populations,

articularly in the non-Markovian case. Note that, after tf1, the
ynamics corresponds to a field-free dynamics.

The analysis of the dissipation helps to understand the diffi-
ulty to reach the highest yield. Indeed, the OCT procedure has
o optimize two processes: (i) Maximization of the localization
f the wave packet or the density matrix; (ii) Minimization of the
ffect of dissipation of the system through the bath modes. The

rst process is relatively easy to reach with our 2D-model, as it
as been shown previously [31]. However, it might be more dif-
cult to fight against the dissipation effect. The following figures
Figs. 7 and 8) illustrate this point by comparing the field-free

H
w
d
c

ig. 6. Evolution of the population ρ0+,0+ (t) and ρ0−,0− (t) (panel a) and of the cohe
= 298 K (see Fig. 5).
= 298 K. We compare cHAC, Markovian and non-Markovian dynamics.

ynamics and the dynamics with the optimal field. The param-
ter, Tr[ρ2(t)], is used for the Markovian and non-Markovian
ynamics while the population on the first channel or the par-
ial trace of ρ over the first channel, Tr[ρch1 ], is used for cHAC
ynamics.

For the Markovian and the non-Markovian cases, the field-
ree dynamics shows a large diminution of Tr[ρ2(t)] when the
ime increases (see Fig. 7), in particular for the strong dissipa-
ion case (� = 2 × 10−3, ωc = 100 cm−1 and T = 298 K, Fig. 7b).

owever, this diminution is smaller for the dissipative dynamics
ith optimal field, which illustrates how the optimal field fights
issipation to get the highest objective yield. Furthermore, in the
ase of the non-Markovian dynamics with the optimal field, the

rence |ρ0+,0− (t)| (panel b) for the 2D case with λ= 2 × 10−3, ωc = 400 cm−1,
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ig. 7. Evolution of the Tr[ρ2(t)] for field-free dynamics (full line) and for a dyna
= 298 K; (panel b) for the 2D case with λ= 2 × 10−3, ωc = 100 cm−1, T = 298

iminution of Tr[ρ2(t)] is much smaller than in the case of the
arkovian one. The necessity of taking into account memory

ffect is obvious in that case.
We note that the final value of Tr(ρ2) is always nearly

qual to the value of the objective yield, [Tr(Wρ)]2 (see
able 2). At convergence, Tr(D2) ≈ 0 where D = ρ− W, so

ne has Tr(ρ2) ≈ −[Tr(W2) − 2Tr(Wρ)] which can be recast as
r(ρ2) ≈ −[1 − Tr(Wρ)]2 + [Tr(Wρ)]2. Since [1 − Tr(Wρ)]2 can
e neglected if ρ is close to W, one obtains Tr(ρ2) ≈ Otf =
Tr(Wρ)]2.

ig. 8. Evolution of the population on the first channel, Tr[ρch1 ], for field-free
ynamics (full line) and for dynamics with the optimal field (dashed line), with
= 2 × 10−3, ωc = 400 cm−1.
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with the optimal field (dashed line), (panel a) with λ= 2 × 10−3,ωc = 400 cm−1,

In the case of the cHAC dynamics, the evolution of Tr[ρch1 ]
s different. Indeed, the number of bath modes seems insuffi-
ient to produce a strong dissipation. For the field-free dynamics,
he evolution of Tr[ρch1 ] presents some oscillations with a time
cale equal to 0.05 ps and the average value is around 0.98. For
he dynamics with the optimal field, the evolution of Tr[ρch1 ]
ecreases and next increases to reach 0.98 which is close to the
bjective yield (see Table 2).

.3.2. Long pulse
Table 3 is devoted to the long pulse case (tf2). These results

ay be compared with the STIRAP approach (see Fig. 2).
The cHAC remains very efficient for a long time. Although

he objective yield with the zero-order field is small (around
0%), the convergence is achieved very quickly. Indeed, in one
teration only, the yield increases up to 97%. On the contrary,

CT does not achieve high performance and the results are of

he same order of magnitude than those obtained with STIRAP.
urthermore, the optimization process has almost no effect on

he objective yield. In particular for the Markovian model, the

able 3
bjective yield O(itc) = |〈〈W†|ρitc(tf)〉〉|2 after different iterations for the long
ulse tf2 = 4.5 ps

T (K)/λ/ωc (cm−1)

298/2 × 10−3/400 100/2 × 10−3/400

2 + 5Da Mara N.Mara Mara N.Mara

(0) % 20.7 68.1 57.5 85.2 79.4
(1) % 97.4 68.1 58.9 85.2 80.2
(itc) % 99.4 68.2 67.7 85.3 81.6

tc 10 20 20 20 20

is the system-bath coupling and ωc is the reference frequency of the Ohmic
pectral function (Eq. (7)).
a Model.
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Table 4
Objective yield O(itc) = |〈〈W†|ρitc(tf)〉〉|2 for the Hadamard gate after different
iterations for the short pulse tf1 = 0.5 ps

T (K)/λ/ωc (cm−1)

298/5 × 10−4/400 298/2 × 10−3/400

2 + 5Da Mara N.Mara Mara N.Mara

O(0) % 93.9 99.6 99.6 94.7 93.7
O(1) % 95.3 99.6 99.6 94.7 93.8
O(itc) % 98.5 99.6 99.6 94.7 94.3
itc 20 20 20 20 20
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is the system-bath coupling and ωc is the reference frequency of the Ohmic
pectral function (Eq. (7)).
a Model.

ncrease of the yield is only of the order of 0.1%. Note that for
he long pulse, the Markovian dynamics gives slightly a better
bjective yield than the non-Markovian one. It was the opposite
or the short pulse (see Table 2).

.3.3. Hadamard gate
Finally, we have applied OCT to generate the pulse able to

ealize the complete Hadamard transformation, ÛHAD

ˆ HAD

(
|0+〉
|0−〉

)
=
(

1√
2

)(
1 1

1 −1

)(
|0+〉
|0−〉

)
=
(

|L〉
|R〉

)
.

Starting from the fundamental state |0+〉, the pulse local-
zes the wave packet in the left well |L〉 = (|0+ 〉 + |0−〉 /√2
hile starting from the first excited state |0−〉 the same pulse

ocalizes it in the right well |R〉 = (|0+ 〉 − |0−〉 )/
√

2. The zero
rder field is the one optimized for one transformation with a
ulse duration tf1 (see Section 5.3.1) and this field is almost
ptimal for the Hadamard gate, since the objective yield is
lways larger than 90% (see Table 4). For a weak dissipation
λ= 5 × 10−4, ωc = 400 cm−1 and T = 298 K), the convergence
s almost reached for all dissipative models (cHAC, Markovian
nd non-Markovian). For a strong dissipation (λ= 2 × 10−3,
c = 400 cm−1 and T = 298 K) the convergence is more difficult

o reach and for the Markovian and non-Markovian models, the
ield has not been improved after 20 iterations.

. Concluding remarks

In a previous work, we have examined different character-
stics of the laser control in a double or triple well topography
ithout dissipation and we have shown the advantages and limits
f STIRAP and OCT [31]. The adiabatic approach requires an
ntermediary states well decoupled from all the other ones. The
D bifurcating surface (see Fig. 1) is a good example show-
ng that some transitions from a well to another one cannot
e controlled by STIRAP, for instance the passing from reac-
ant (H3CO) to P or P′. The delocalized states above TS1 are
oo strongly coupled by the dipolar momentum. OCT succeeds

n realizing the localization but produces a very complicated
ulse which may be unrealistic. On the contrary the symmet-
ic P and P′ double well offers many transfer pathways, which
acilitates the obtaining of an optimal pulse both by STIRAP

a
t
e
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nd OCT. In this case, the OCT method reaches a high perfor-
ance with shorter laser pulses than STIRAP. These pulses are in

ddition very simple and realistic. One observes that the mecha-
ism found by OCT mainly uses the Stark effect which modifies
he profile of the potential energy surface. Dynamic Stark Con-
rol process has been recently suggested as a promising way to
ontrol reactivity with photonic reagents [82].

Here, we address the problem of the stability of these pre-
ious results against interaction with an environment. We have
hown that even in quite difficult situations in which the envi-
onment is strongly coupled with the system (high temperature,
ow frequency of the bath and non-negligible coupling strength)
aser control with short pulse duration succeeds in creating the
oherence of the Hadamard gate with a good performance index
of the order of 95%). We have also found a pulse achieving to
ull Hadamard transformation with a similar result. The chal-
enge will be now to implement other transformations and their
oncatenations.

Different comments about the laser control can be made. (i)
TIRAP needs long pulses so the control must fight strongly
gainst dissipation. Fig. 2 shows the difficulty to maintain an
bjective yield larger than 90% with increasing coupling. OCT
llows to decrease the pulse duration and therefore to reach the
bjective with a high performance. (ii) OCT remains very effi-
ient even for long pulses of the order of those used in STIRAP
n the case of a discrete coupling to few oscillators. But this is
n fact a laser control of a non-open 7D system treated partially
ith the harmonic approximation. The objective yield reaches
9.4% in 10 iterations and could be improved. On the con-
rary, the results obtained with Markovian or non-Markovian
ynamics are in agreement with STIRAP results and are not so
ood. (iii) For a short pulse, memory effect plays a role. The
on-Markovian approach predicts a more efficient fight against
issipation but however the discrepancy is not very important.
arkovian and non-Markovian predictions merge when the ref-

rence frequency of the bath ωc becomes larger than about
000 cm−1. This frequency corresponds to a correlation time
f about 3 fs, the memory effects are therefore negligible.

Finally, we can conclude that cHAC is a promising way to
ncrease the number of degrees of freedom when the coupling
ith the bath is not too large. Furthermore, we point out that,

he studies using adiabatic separation with two actives degrees of
reedom are unusual. Some recent examples like logical gates on
H3 [29] or other small molecules could be explored, mainly
hen potential energy surfaces exist. Worth noting, we have

lready developed a potential for ammonia for spectroscopic
pplication and it is particularly well adapted to cHAC [74]. If
o potential is available, cHAC permits easily a modelling with
ome oscillators and the results give more confidence in the
uccess of laser control than the continuous dissipative model.
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ppendix A. Analytical estimations for an adiabatic
ontrol in a Markovian environment

In this appendix, we derive several analytical formulas, which
llow to describe the dynamics of a system coupled to a Marko-
ian bath and controlled by a f-STIRAP strategy. For that
urpose, we follow and we generalize calculations of Ref. [51].
e denote by |1〉, |2〉 and |3〉 the three states involved in the

ontrol. To simplify the notations and to give them a general
haracter, we write γ ij the relaxation coefficient from the state
i〉 to the state |j〉 and γ̃i the sum

∑
jγij . The level 3 is coupled

esonantly respectively to the level 1 by the Rabi frequency Ωx

nd to the level 2 byΩy (see Sec. 4). We work henceforth in the
asis spanned by the states |1〉, |2〉 and |3〉.

After a RWA approximation, the Hamiltonian of the system
an be written in representation interaction as

0 0 Ωx

0 0 Ωy

Ωx Ωy 0

⎞
⎟⎠ (A1)

The adiabatic states |ψ0〉, |ψ+〉 and |ψ−〉 are the eigenstates
f the Hamiltonian with eigenvalues 0, Ω and −Ω where Ω =
Ω2
x +Ω2

y. Simple algebra leads to

ψ0 = 1

Ω
(Ωy|1〉 −Ωx|2〉)

ψ+ = 1

Ω
√

2
(Ωx|1〉 +Ωy|2〉 +Ω|3〉)

ψ− = 1

Ω
√

2
(Ωx|1〉 +Ωy|2〉 −Ω|3〉)

(A2)

We use the same adiabatic basis in the presence of dissipation.
ntroducing the density matrix ρ of the system and using Eq.
A2), the matrix elements of ρ in the adiabatic basis can be
ritten as a function of the matrix elements of ρ in the diabatic
asis. For instance we obtain that

++ − ρ−− = 1

Ω
[Ωx(ρ13 + ρ31) +Ωy(ρ23 + ρ32)] (A3)

here the notations can be deduced straightforwardly. Assuming
hat the relaxation terms are small as compared to the peak Rabi
requencies, it can be shown [31] that the off-diagonal terms
0+ , ρ0− and ρ+− of ρ in the adiabatic basis remains small
nd negligible. This assumption is made in order to simplify
he analytical calculations and is checked numerically in Sec.
. The next step consists in determining the diagonal elements
++, ρ− − and ρ00 subject to the relation ρ++ + ρ− − + ρ00 = 1.
nverting Eq. (A2), one arrives to the following equations

ρ13 + ρ31 = Ωx

Ω
(ρ++ − ρ−−)

(A4)

ρ23 + ρ32 = Ωy

Ω
(ρ++ − ρ−−)

As (∂ρ13/∂t) = −(1/2)(γ̃1 + γ̃3)ρ13 + α13 and (∂ρ23/∂t) =
(1/2)(γ̃2 + γ̃3)ρ23 + α23 where α13 and α23 correspond to the
tobiology A: Chemistry 190 (2007) 359–371

erms which do not depend on dissipation, we then have

∂ρ++
∂t

− ∂ρ−−
∂t

=
[
− Ω2

x

2Ω2 (γ̃1 + γ̃3) − Ω2
y

2Ω2 (γ̃2 + γ̃3)

]

× (ρ++ − ρ−−) (A5)

There is no contribution from the other terms as in the non-
issipative limit, ρ++ and ρ− − are constant in time. We assume
nitially, i.e. at t → −∞, that ρ++(−∞) = ρ− −(−∞) = 0. We
educe from Eq. (A5) that ρ++(t) = ρ− −(t). To determine ρ00,
e use the fact that

00 = 1

Ω2 (Ω2
yρ11 +Ω2

xρ22 −ΩxΩyρ12 −ΩxΩyρ21) (A6)

Deriving this expression with respect to the time and neglect-
ng the derivatives of the Rabi frequencies which are assumed
o be small, we obtain

∂ρ00

∂t
= 1

Ω2

(
Ω2
y

∂ρ11

∂t
+Ω2

x

∂ρ22

∂t
−ΩxΩy

∂ρ12

∂t
−ΩxΩy

∂ρ21

∂t

)
(A7)

The next step consists in using the Schrödinger equation to
eplace the terms ∂ρ11/∂t, ∂ρ22/∂t, ∂ρ12/∂t and ∂ρ21/∂t by their
xpressions in terms of ρ11, ρ22 and so on. We have, for instance,
hat

∂ρ11

∂t
= −γ̃1ρ11 + γ12ρ22 + γ13ρ33 + α11 (A8)

Finally, we express these last terms as a function of ρ00, ρ++
nd ρ− − to derive the following equation:

∂ρ00

∂t
= λ(t) + μ(t)ρ00 (A9)

here

= γ12
Ω4
x +Ω4

y

4Ω4 + γ13
Ω4
y

2Ω2 + γ23
Ω2
x

2Ω2 (A10)

nd

= −−Ω2
y

Ω2 γ̃1 − Ω2
x

Ω2 γ̃2 − γ13
Ω2
y

2Ω2 − γ23
Ω2
x

2Ω2

+
[
Ω2
xΩ

2
y

Ω4 − 1

2

]
γ12 (A11)

s ρ00(−∞) = 1, the solution of Eq. (A9) can be written as
ollows

00(t) =
∫ t

−∞
λ(u) du+ exp

[∫ t

−∞
μ(u) du

]
(A12)
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