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Abstract

We examine the effect of dissipation on the laser control of a process that transforms a state into a superposed state. We consider a two-dimensional
double well of a single potential energy surface. In the context of reactivity, the objective of the control is the localization in a given well, for instance
the creation of an enantiomeric form whereas for quantum gates, this control corresponds to one of the transformation of the Hadamard gate. The
environment is either modelled by coupling few harmonic oscillators (up to five) to the system or by an effective interaction with an Ohmic bath.
In the discrete case, dynamics is carried out exactly by using the coupled harmonic adiabatic channels. In the continuous case, Markovian and
non-Markovian dynamics are considered. We compare two laser control strategies: the Stimulated Raman Adiabatic Passage (STIRAP) method
and the optimal control theory. Analytical estimations for the control by adiabatic passage in a Markovian environment are also derived.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Controllability of wave packets in a double-well potential has
been largely explored since the early days of laser-driven dynam-
ics and remains nowadays an attractive topic [1]. Symmetric
or asymmetric double wells are ubiquitous in chemical physics
and can be encountered in the context of hydrogen tunneling,
electron transfer and isomerization or enantiomer separation.
According to the barrier height and the corresponding tunneling
time, the control aims at transferring a wave packet from one
well to the other [2—11] or at localizing a delocalized state in
a given well [12-15]. A large number of model systems have
already been investigated, we can cite for example the selective
preparation of enantiomer in H3POSH [13], the intramolec-
ular hydrogen transfer in malonalhehyde [2] and thioacetone
[5], the Cope rearrangement in semibullvalene [3], the control
of molecular chirality in difluoro[c]phenanthrene [10] and the
isomerization of hydrogen cyanide [16-21] or methoxy radi-
cal [31]. Recently, the exciting new field of molecular quantum
computing has emerged and vibrational states have been pro-
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posed to be a potential candidate for implementing quantum
qubits [22-28]. Vibrational states of a double-well system have
been used for that purpose [29-31]. The goal of quantum con-
trol is to design laser pulses able to drive a quantum system
towards a specified target state whereas in the context of quantum
computation, the goal is the implementation of unitary transfor-
mations acting on different inputs. This latter control is thus
more challenging due to multiple initial states and correspond-
ing targets and more demanding about the performance of the
control.

In this paper, we propose to revisit the control of a double-
well system by gathering two different strategies: the Stimulated
Raman Adiabatic Passage (STIRAP) scheme and the Optimal
Control Theory (OCT). We address the fundamental problem of
the control of this system when is coupled with an environment.
We do not consider non-adiabatic interactions between differ-
ent energy surfaces in this work. We compare the efficiency of
STIRAP and OCT by analyzing the structure and the robust-
ness of the pulses obtained and their characteristics (intensity,
duration) needed to achieve different objectives. We choose a
two-dimensional (2D) potential energy surface modeling the
migration of a hydrogen atom around a CO bond (isomeriza-
tion H3CO — HyCOH). This is a benchmark case for a surface
presenting three wells connected by a bifurcating region. We
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notice that this 2D surface exhibits symmetric and asymmet-
ric double-wells allowing various wave packet controls. The
dynamically active coordinates are two angles (spherical coor-
dinates of the migrating atom with respect to the middle of the
bond). It is clear that consideration of other degrees of free-
dom or more generally coupling with an environment will be
crucial in laser driven dynamics. The point is to increase the
number of dynamically active degrees of freedom or to sim-
ulate dynamics in condensed phase by efficient and realistic
dissipative models [32,33]. In a first approach, we consider
the coupling of the active modes with a small number of bath
oscillators. Dynamics is treated in the framework of coupled
adiabatic channels which allow considering exactly up to seven
degrees of freedom. It should be also possible to use alternative
approaches, for example the promising OCT-MCTDH (Multi-
configuration Time-Dependent Hartree) method [34] which can
take into account a larger number of oscillators [35,36], par-
ticularly with the G-MCTDH extension which uses Gaussian
wave packets for some modes [37] or the surrogate Hamilto-
nian method [38]. In a second step, we simulate the remaining
intra-molecular modes and the degrees of freedom of the sur-
rounding environment by a bath with an Ohmic spectral density.
We consider the control of a non-Markovian dynamics by an
efficient extension [39] of the Rabitz iterative methods used to
solve OCT equations in the density matrix formulation [40]. We
neglect correlation between dissipation and laser-driven dynam-
ics [41,42]. Alternative methods could also be used to treat the
dissipative memory kernel [43]. Another approach using STI-
RAP scheme [44,45] has been implemented in the case of a
Markovian dynamics [46—49]. We do not use STIRAP strat-
egy in a purely adiabatic regime which requires pulses of large
duration. In order to reduce this time, we consider the solution
given by the adiabatic equations as a trial field depending on
several parameters as the Rabi frequencies. In a second step,
we optimize the different parameters to keep efficient control.
Note that OCT can be viewed as a control scheme optimizing a
laser field with an infinity of degrees of freedom, which justi-
fies the comparison between the two methods. Finally, we point
out that different mixed quantum-classical approaches based on
the hydrodynamical description [50] or on Wigner distribution
[51] are promising issues for laser driven dynamics of complex
systems.

2. Dissipative dynamics

The total Hamiltonian (system + bath) can be written as
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where I:I(I)\ID is here a 2D double-well Hamiltonian, Hpield =
—E(t) and q are the active coordinates coupled to the bath.
This Hamiltonian contains a bath Hamiltonian expressed in mass
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We compare two situations: one in which the system is cou-
pled with few modes (up to five) and another in which it is
coupled to a continuous distribution of oscillators. In the latter
case, the coupling constants are characterized by the following
bath spectral density (Caldeira Legett model [52])
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This density is approximated by an Ohmic function
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where o, is the reference frequency corresponding to the max-
imum of the function.
In the case of a finite number of oscillators, the bath spectral
density is discretized by
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where d(w) is the frequency density which is estimated by
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wn, being the largest frequency of the bath [35].

In the case of an infinite ensemble of oscillators, the sys-
tem density matrix is defined by p(f) = Trgosep(f) where Trp is
the partial trace over the bath degrees of freedom. The reduced
evolution equation for p() is obtained in the framework of the
projector formalism of Zwanzig—Nakajima [32,33,53]. Differ-
ent approximations are made to derive the operational equations.
Initial correlation between the system and bath degrees of free-
dom is neglected, i.e. the initial density matrix factorizes as
osgB(t =0) = p(t = 0),0163q and the bath is assumed to be in
thermal equilibrium. Initial correlation could be introduced by
using a more sophisticated treatment [54]. As mentioned above,
we also neglect the correlation between the laser and the dis-
sipation dynamics [41,42]. The second order expansion of the



D. Sugny et al. / Journal of Photochemistry and Photobiology A: Chemistry 190 (2007) 359-371 361

Half-live time 71/, in fs and the time tax for which C(¢) (Eq. (12)) vanishes for the two reference frequencies (Eq. (7)) and temperatures used in the simulations

we=400cm™! we=100cm™!

Table 1

we=1000cm™!
T=298K T12=3, Tmax =50
T=100K 712 =2.8, Tmax =47

T12=9, Tmax =200
T12="7, Tmax =80

TIR= 50, Tmax = 500
7172 =38, Tmax =400

exact Zwanzig—Nakajima reduced equation in the Schrédinger

representation reads [3,32]
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where A is the matrix of the function of the active coordinate
flq) (Eq. (4)). The bath correlation function is given by [41]
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where = 1/kT is the Boltzmann factor. The coupling strength
with the bath A finally appears in the memory as A%. The Markov
approximation consists in replacing the upper born of integration
in Eq. (11) by t=00 and p(t — 7) by p(¢). Different approxima-
tions such as a rotating wave approximation then lead to the
Redfield [55] or the Lindblad form [32,33,56,57]. We recall that
the Markovian regime arises when the correlation time of the
bath tp is smaller than the typical time scale g over which the
system varies appreciably. We choose the Lindblad form because
it can be shown that the density matrix of the system p remains
a positive semi-definite Hermitian operator having Tr[p] =1 and
Tr[,oz] < 1. Here, the Lindblad equations take the form:
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In this paper, we examine the effect of the system-bath inter-
action on the laser control. We vary the reference frequency w,
(Eq. (7)) and the temperature (7=298 and 100 K) and therefore

the correlation function C(#) (Eq. (12)) which determines the
memory time. The characteristic time scale of the bath tg may
be estimated by the half-life time 71/, and also by the time Tax
for which C(7) vanishes. The two 71/, and Ty times are given
in fs in Table 1.

‘We summarize the three relevant time scales. g is typically
of the order of 10fs, 7g is about 50 fs when it is estimated by
a typical frequency of 600 cm™! but the tunneling time reaches
50 ps. The relaxation time 7y is roughly given by 1/A2, i.e. about
6 ps for most of our examples using A =2 x 1073, We will con-
sider different situations for which non-Markovian dynamics is
justified because tp is not smaller than tg.

3. Model

The model represented in Fig. 1 is a bifurcating region in
the ground potential energy surface of a polyatomic system
(isomerization H3CO — H>COH). Such a region contains three
non-equivalent wells. A deep reactant well is connected to a sym-
metric double-well corresponding to two rotational conformers
P and P’ (see Fig. 1). The transfer from the reactant well to the
double P and P’ basin is well described by two active coordi-
nates 0 € [0, ] and ¢ € [—m, ] which are the spherical angles of
the migrating atom H with respect to the center of the CO bond.
This three-well region is an interesting pinball topography which
suggests different control processes. The Hamiltonian is given
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Fig. 1. Isoenergy contours (in eV) in the model potential energy surface of the
isomerization H3CO — H, COH as a function of two active angular coordinates.
The zero of energy is at the bottom of the product well (P or P'); the energies
of the reactive well and of the transition states, 7S/ and 752, are respectively:
0.181eV, 1.854eV, 0.195eV.
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where Euclidian normalization convention is adopted. The
inertia moments are Iy =6160au and I, =4430 au. The model
potential is calibrated on an ab initio computation at the QCISD
level [58]. Analytical expressions of the potential and of the
dipolar momentum surfaces are given respectively in Refs.
[58] and [31]. In the Cs geometry (¢ =0), the barrier height
at the first transition state 7S/ from the reactant is 1.673eV
(13494 cm™!). The barrier for the internal rotation at T7S2 is
0.195eV (1573 cm™ ).

We focus on the symmetric double well region. In this
example, we consider the first two delocalized states in the dou-
ble well. The vibrational quantum number for the 6 oscillator
remains equal to zero. The states of parity even and odd should
be denoted as |04,0) and |0_,0) but, they will be simply written
as |04) and |0_). The splitting of the first level |0;) —[0_) is
4.3 %107 eV (0.35cm™!). This corresponds to a rather long
tunneling time of about 48 ps much longer than the duration of
the pulses used in the control. The target of the control is the
localization of the ground delocalized state, |0,.), into one of the
well P or P’ (see Fig. 1) which corresponds to a localized wave
function |L) or |R):

_ 104100 e 100 —10)
V2 V2o

The goal is thus the creation of a superposed state and
therefore of a coherence between the two levels. We adopt a
coupling function (Eq. (5)) of the form f(q) =cos(¢) + sin(¢).
The molecule is assumed to be aligned in the laboratory axis
frame. ¢, is directed along the CO axis. We use two polariza-
tion directions ¢, and é,. The corresponding dipolar functions
1x(0,¢) and 1, (0,¢) are symmetrical and antisymmetrical func-
tions, respectively.

[L) (16)

4. STIRAP and Markovian dissipation

The control strategy which is used in this section is based on
Stimulated Raman Adiabatic Passage or extension of this tech-
nique such as f-STIRAP (see [44,45] and references therein for
a complete overview). STIRAP is a process involving a coun-
terintuitive sequence of two pulses in a three-level system in
which the field of the Stokes pulse precedes and overlaps the
field of the pump pulse. The f-STIRAP strategy differs from the
Stirap one by the fact that the pump and the Stokes pulses have
the same amplitude at the end of the field. The idea which is
at the basis of most of adiabatic schemes is to follow an adia-
batic state corresponding respectively to the initial state when the
field is switched on and to the target state when it is switched off.
Such techniques are particularly efficient to achieve population
transfer but can also be used to implement quantum gates [31].
Some investigations have already been performed in dissipative

quantum systems [46—49]. All these studies have pointed out
the negative effect of dissipation on the efficiency of STIRAP
techniques.

In this section, we consider the 2D model and the influence of
a Markovian dissipative bath upon the controlled dynamics by f-
STIRAP. We limit our study to the Markovian dynamics in order
to discuss the control properties from a numerical and analytical
point of view. Indeed, the simple form of Markovian mas-
ter equations allows the derivation of analytical formulas. The
technical aspects of the analytical calculations are reported in
Appendix A. The behaviour of the control under non-Markovian
dissipation is expected to be similar but is not treated in this
paper.

We now analyse the processes |04+) — |L) and |0;) — |R)
which will allow us to detail the different steps of the control
strategy (see also Ref. [31] for a complete description). Other
control schemes can be analysed with the same kind of argu-
ments. We first select an adiabatic technique adapted to the
structure of the energy levels and to the dipolar matrix elements.
We consider for that purpose the three levels [0.), |0_) and
|2+). Other set of levels could be selected. Taking into account
the particular symmetry of the dipole moment in this basis, we
choose the f-STIRAP strategy. To be more precise, we recall
for instance that u, only couples the levels |04) and |2.), the
transition |0_) to |2;) being forbidden. The f-STIRAP strategy
differs from the Stirap one by the fact that the pump and the
Stokes pulses have the same amplitude at the end of the field.
We assume that the two pulses are Gaussian with the frequency
w = Ey, — (1/2)(Ep, + E¢_) and that the Rabi frequencies are
the same for the two pulses. The scheme can be summarized as
follows

2-0)
2+,0)

pump (E,) Stokes (E )

[1-,0)
[1+,0)

10-,0)
[0+,07

where the Stokes pulse is polarized along the ¢, direction and
the pump pulse along the ¢, one. Simple algebra shows that the
adiabatic state which has to be considered here can be written
in the following form

1
\/ 25+ 2

the two Rabi frequencies fulfilling the conditions

[Yo(1)) = (£2y104) — £2,/0-)), a7

Q
lim == = +1 (18)

t— 400 ,Qv
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where 2, = |/L§(0+/2+)Ex| and £, = |/,L§;O_/2+)Ey|. One
then deduces that |yo(—o0))=04) and |¢¥o(400)) = (1/\/5)
[104+) F10-)] which corresponds to a perfect transfer in the
adiabatic limit. However, this adiabatic limit requires pulses of
very long duration. A standard condition is for instance £2¢>> 1
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where §2 is the peak Rabi frequency and ¢ the duration of the
pulse.

It is clear that this long duration is not compatible with dissi-
pation since the control cannot cancel the effect of dissipation.
A precise mathematical description of this point is given by the
notion of controllability [59,60] but goes beyond the scope of
this paper. One therefore concludes that the target state cannot
be reached exactly in the dissipative case even in the adiabatic
limit. The idea is then to reduce the duration of the overall field.
In order to keep the efficiency of the control as high as possible,
we consider the adiabatic pulse as a laser field depending on
several parameters (Rabi frequencies, delay between the pulses)
and we optimize these parameters for a given duration. The opti-
mization has been done on a grid to preserve as much as possible
the robustness of the process.

Figs. 2 and 3 illustrate the results of applying the f-STIRAP
strategy. Very good localization is obtained for a parameter A
lower than 1 x 1073, this localization decreasing smoothly as A
increases. The localization is close to 0.99 is the non-dissipative
case [31]. The total duration of the process is here a crucial
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Rabi frequencies
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Fig. 2. Dynamics controlled by f-STIRAP strategy for the preparation of the
superposed state |R). Panels (a) and (b) show, respectively, the evolution of the
localization in the right well for different values of A and the Rabi frequencies
of the different pulses. Rabi frequencies are in atomic units. The solid line of
panel (b) corresponds to the Stokes pulse and the dashed one to the pump pulse.
The total duration of the process is of the order of 4.5 ps.
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Fig.3. Same as Fig. 2. Panels (a) and (b) represent the evolution of populations in
the Hamiltonian eigenbasis and in the superposed states |L) and |R). Populations
of other vibrational states remain small during the process. The dashed lines of
panels (b) and (c) depict the results of analytical calculations (see text). The total
duration of the pulse is of the order of 20 ps.
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parameter and must be of the same order of the typical decay
time induced by the dissipation. This latter time is proportional
to 1/A%.

Fig. 3 shows the excellent agreement between analytical and
numerical calculations for the description of the evolution of
tr[p?] (panel (c)) and of tr[ p(#)pr] (panel (b)). Using equations
of Appendix A, it can be shown that

2,82 1 2,82
= (2 +3 ;‘5) poo(t) (19)

1
trlp(H)pL] = i

where pgo(?) is given by Eq. (A12). The analysis of Eq. (19)
shows that the localization roughly decreases exponentially with
A and the duration of the process. In the case where the two Rabi
frequencies have the same maximum and the same shape, one
sees that the localization is independent of this maximum. In
the regime described by the analytical calculations, an increase
of the Rabi frequencies does not improve the efficiency of the
control.

The robustness of the strategies has been checked against
two parameters, the time delay between successive pulses and
the peak Rabi frequency, and for two different values of A. This
point is shown in Fig. 4. In each case, a satisfactory robustness is
achieved around the maximum of localization. This maximum
decreases with the dissipation but the range of robustness seems
not affected. We also notice a shifting of the white region towards
smaller delays as A increases whereas this region does not move
along the vertical axis. This confirms the idea that an efficient
strategy consists in reaching as quickly as possible the target state
in order to avoid the negative effect of dissipation. As mentioned
above, this point is also justified by the analytical calculations.

5. Optimal control

We compare the role of the coupling with a discrete or con-
tinuous ensemble of oscillators. In the first case, OCT is applied
in the total Hilbert space (system+bath) by propagating the
wave packet with the coupled harmonic adiabatic channels. The
coupled bath modes are thus exactly taken into account. The
continuous case is treated in Liouville space with a Markovian
or non-Markovian master equation. We first summarize the tech-
nical points of the implementation of OCT in both cases and we
next gather the results.

5.1. OCT with coupled harmonic adiabatic channels

Different monotonically convergent algorithms for solving
optimal control problems in the Hilbert space have been pro-
posed. The objective functional can be defined in different
manners [61,62] which are strongly connected [63]. We choose
the functional which decouples the boundary conditions for the
initial wave packet and the Lagrange multiplier [61] (functional
called of type I in the recent analysis [63])

153
J = Wi pld )2 — “/o EX(0)di

iy .
— 2 [/o Wi rO) (Y010, — H|Yi(0) dr|  (20)

12 X 10_‘5 -
F 0.9
10 10.85
10.8

Rabi frequencies
[e1]

Delay x 10%

5
12)(10

Rabi frequencies

4 7 10 13
Delay x 104

Fig. 4. Robustness of the f-STIRAP process as a function of the peak Rabi
frequency and the delay between the pulses for a total duration of 4.5 ps of
the overall field. Rabi frequency and delay are in atomic units. The upper
and the lower part of the figure correspond, respectively, to A=5 x 10~ and
A=2x1073.

The objective yield is measured by O(ty) = [ (¥i(tp)|¢y) |2. The
procedure to maximize the cost functional under constraint is
described in details in the literature [64]. One obtains three
coupled equations: the Schrédinger equation for |y (f)) with
an initial condition |y;(t=0)=|¢;) (forward propagation), the
Schrodinger equation for the Lagrange multiplier [«(#)) with a
final target condition |A(#y)) = |¢s) (backward propagation) and
an equation for each component of the optimal field (here Ex(f)
and Ey(1))

Ejn) =— <h1a> SO (O) W (Ol i ()] 21
where « is a positive penalty factor which weights the influ-
ence of the laser fluence. An experimental switching function
s(t)=sin2(m/tf) is usually introduced [64], « is then replaced
by o — a/s(t). The equations are solved by an iterative formu-
lation [61] and we use the improvement proposed in Ref. [65].
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At each iteration, the field is given by E;k) = Eg-k_l) + AE;k)

where AEg»k) is calculated by Eq. (21).

The propagation is carried out by the closed coupled equa-
tions in the adiabatic basis set, which is in this case a harmonic
basis set. Indeed, the separation between the active coordi-
nates, q=[60, ¢], and the bath modes, Q=[Q1, ..., Onbl, leads
naturally to an adiabatic separation [66—75] of the basis set
into an active part, ¢;(q), and a bath one, xy(Q;q). There-
fore, the time-dependent wave function can be expressed as
follows:

¥(q, Q.0 =) Cru( x ¢i(@) x xu(Q;q)

LU

The xy(Q;q) basis functions depend parametrically on
the active coordinates and they can be viewed as adiabatic
channels along the active coordinates. They are also the eigen-
functions of the Nj,-Harmonic Hamiltonian, Z;-Vb[((f??/Z) +
((1/2)@))Q; — (¢ f(@)/w}))). Thus, the x1/(Q:q) basis func-
tions are simply the product of N, 1D-Harmonic eigenfunctions
and are labeled by means of the excitations in the N, bath
normal modes, jy. Those retained go from the ground state
onwards to some maximal excitations, MaXexcit Or more pre-
cisely, Zﬁv b ju < Maxexcit. The values of ¢; are obtained using
Eq. (8) (see Ref. [35]) where the frequency w,, is the largest
value among the N, harmonic frequencies.

After integration over the bath modes, the total Hamiltonian
can be rewritten as a matrix in (U,V) of operators acting only

on the active variables, I:I%fi,(q, dq) or as a set of coupled effec-
tive Hamiltonians. This representation is strictly equivalent to
the initial Hamiltonian (Eq. (1)), provided the bath basis set is
complete [58,74]. Since the coupling between the active coor-
dinates and the bath modes is present only in the potential, the
general expressions of the effective operators are simplified as
follows:

ND
A off ~ ;
Hyy(q, 3g) = HYPsuv + Y flov@d + AV (@ (22)

i=1

Furthermore, the main contribution of the diagonal value of
the Aijf\f,(q) matrix is mainly the harmonic energy of the Nj-
harmonic oscillators. The diagonal correction, the off-diagonal
term of AV{}f\f,(q) and .ff’UV(q) matrices are due to the kinetic
contribution associated with the active coordinates of the adia-
batic basis functions.

In the present study, the choice of the initial, |¢;), and the tar-
get, |¢y), wave packets is fundamental fundamental in order to
compare the results with Markonvian and non-Markovian prop-
agation. Indeed, for the last two propagation schemes, the initial
and the target wave packets are built with the spectral basis-set
of ﬁI(I)\ID without bath contribution. |¢;) is the ground state, |0 )
and |¢y) is the sum of the ground state and the first excited state,
(1/4/2)(|04) + |0_)). For the coupled adiabatic channels, we
have chosen the same wave packets for the active contribution
and the ground state of the harmonic bath basis function, |xo)

(U=0):
1
V2

The propagation of the wave packets has been obtained
through the Taylor expansion of the evolution operator [76,77]
with an order (here fifth order), which ensures the time reversibil-
ity and norm conservation of wave packet.

The primary basis sets are the normalized spherical harmon-
ics and the number of spectral basis functions of I:I(I)VD is 30.
All the integrals are performed numerically with the help of a
Gaussian quadrature scheme adapted to the basis. The integrals
and the propagations have been performed with the EIVibRot
program [78,74].

The number of bath modes, N, used here is 5. This method
is also named 2 + 5D. The values of w; are equal to: 133.3,
266.6, 400, 533.3, 666.6 cm~!. Note that the value of the param-
eter Maxexjt is large enough to ensure the convergence of the
propagation with the optimal electric field. The variation of
the objective of quantum control is around 0.1 or 0.2% when
Maxexcit increases by one. Moreover, MaXexcir depends on the
coupling, ¢; or more precisely on A. The optimal values of
Maxexcit are, respectively, 2 and 3 for a parameter A equal to
5x 107% and 2 x 1073, With the N + 5D model, the number of
harmonic adiabatic channels are, respectively 21 and 56 when
MaxXexcit =2 or 3.

ldi) =101 x0)  Iér) = —=(104) +10-))Ix0)

5.2. OCT with Markovian and non-Markovian dissipation

We use the density matrix approach suited to include coupling
with a bath. Different approaches have been proposed [79,80].
We adopt here a monotonically convergent algorithms adapted
for the Liouville space [40,63]. The objective is the maximiza-
tion of O(ty) = |((WT|p(tf))) |> where W is the target operator.
(A different choice which minimizes the discrepancy Tr (D?)
where D = p(tf) — W has been recently suggested for dissipative
systems [81].) According to our procedure in Hilbert space, we
adopt the functional which decouples the boundary conditions
[63]. The optimization procedure of the chosen functional leads
to coupled equations of motion for the density matrix |p(#))) (in
superoperator notation), the Lagrange multiplier | Z(¢))) (which
imposes that the Liouville equation remains fulfilled at any time)
and the laser field E(¢). |p(?))) is propagated forwards with an
initial condition while |Z(¢))) is propagated backwards with a
final condition. In this formulation, each component of the field
is given by

—SIm{{(p(IED)) (EDIM | (1))}

Ei) = o

(23)

where ((AT|B)) =Tr(AB), Mj| p(1))) = |110(1))) — | p()p;)) and &
is the penalty factor, including the s(#) function. The field is
built iteratively by a convergent algorithm [40] adapted to non-
Markovian dissipation [39]. If we design by I'(¢) the memory
kernel given by Eqgs. (10) and (11), the forward propagation with
an initial condition and the backward propagation with a final
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condition satisfy the following equations

0 i
51PN = —2

= |67 = D_MGE 0 | Hlp)))
J

t
- /0 dz It — Do) 24)
) .
SIE@) = | LI® = S MiE 0| 150)
t h ;
Iy
+ / dr I'(t — || E(7))) (25)
t

where LEP|p(1))) = |HSP p(1))) — |p(1) HEP)). The bath corre-
lation function appearing in Egs. (10) and (11) is computed by
Eq. (12) for different frequencies w, and temperatures.

5.3. Results

In each example, the zero-order field is the one optimized
without dissipation in the wave packet formalism. The objec-
tive yield was then 99.999%. This procedure is efficient for two
main reasons. First, the OCT algorithm in presence of dissipation
converges very fast for different baths and in most cases, the con-
vergence is always achieved in about 20 iterations (see Table 2).
Second, starting with the same zero-order field enforces the algo-
rithm to converge towards the same type of solutions for the
different strategies in the Hilbert (cHAC) or Liouville space. We
recall that two polarizations and therefore two pulses E,(f) and
Ey (1) are used. The first one has a duration equal to t = 0.5 ps.
This is the shortest duration which avoids a too strong field, the
limit being fixed at |Epax|=0.05au (1au=5.14 10° Vem™).
For the second pulse, we have tp =4.5 ps which is the short-
est time reached by STIRAP scheme. The two pulse durations
must be compared with the characteristic time of the field free
dynamics (we recall that the tunneling time is 48 ps and the typ-
ical decay time of the dissipation without field 7 is of the order
of 1/\?,i.e. g = 6 ps for A =2 x 10~3). They must be also com-
pared with the correlation time of bath to foresee the role of the
memory effect (see Table 1). # is of the order of magnitude of
some correlation times so this corresponds to an intermediate
memory case. fr ; is larger than the correlation times, the situa-

Table 2

tion is of short memory and Markovian dynamics is expected to
be sufficient.

5.3.1. Short pulse

Table 2 gathers the objective yields obtained by cHAC,
Markovian and non-Markovian dynamics with different baths
for the first short pulse of duration #; . We give the objective yield
with the zero-order field O(0) (the optimal field without dissipa-
tion) and after the first iteration O(1). This confirms the quality
of the zero-order field. O(itc) gives the final performance and the
number itc of required iterations. One observes that for the weak
coupling A=5 x 10™* each method converges easily because
the performance index is already very high with the zero-order
field. We focus now on the case with a coupling A=2 x 1073
which is the maximum value ensuring convergence of the cHAC
method with the chosen basis set. cHAC with (2 + 5)D starts with
the smallest yield but succeeds in reaching a good performance.
Due to dissipation, both Markovian and non-Markovian dynam-
ics do not reach the objective yield with 100% efficiency. As
can be expected for the pulse in the intermediary memory case,
the results are not the same for Markovian and non-Markovian
dynamics but they remain of the same order of magnitude. Dis-
sipation remains weak during the pulse duration #; but memory
effects are not completely negligible mainly for w.=100cm™!.
In that case, 1, =50fs and T2x =500 fs which is of the order
of In = 500 fs.

We now give some details for the case with A=2 x 1073,
w.=400cm™!, T=298 K and tpn. Fig. 5 show the two compo-
nents E,(7) and Ey() of the optimal field obtained by cHAC,
Markov and non-Markovian dissipation.

The zero order E,(¢) field is very simple and mainly formed
by a half cycle pulse with a shape corresponding to the s(7)
function. The transfer of population is realized by the short half
pulse of the E\ () component [31]. The action of the E(?) field
roughly corresponds to a Stark effect. At the maximum of the
pulse, the laser field adds an effective potential which strongly
decreases the barrier of the energy landscape. In this example,
the barrier height is pulled down of about 75%. One observes
that the fields keep the same shape when dissipation occurs. A
manifestation of the memory effect can be seen in the pulse
duration #; but the discrepancy remains very small between
Markovian and non-Markovian dynamics.

Fig. 6 give the evolution of the population in the |0,)and
|0_) states and the absolute value of the coherence | oo, o_(?)]

Objective yield O(itc) = [((wh [0itc (1)) |2 after different iterations for the short pulse tn =5001fs

T (K)/Mwe (em™1)

298/5 x 10747400 298/2 x 1073/400

100/2 x 1073/400 298/2 x 1073/100

2+5D* Mar?* N.Mar?* 2+5D* Mar* N.Mar® Mar?* N.Mar?* Mar?* N.Mar*
0(0) % 98.4 99.4 99.4 90.7 94.5 94.3 97.6 96.9 82.8 89.7
o) % 99.1 99.6 99.6 96.5 94.7 94.6 97.8 97.2 83.0 90.1
O(itc) % 99.6 99.6 99.6 97.9 94.7 95.3 97.8 97.3 83.1 94.4
itc 20 20 20 20 20 20 20 20 20 20

A is the system-bath coupling and w, is the reference frequency of the Ohmic spectral function (Eq. (7)).

4 Model.
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Fig. 5. OCT field E,(¢) and E\(t) for the 2D case with 1 =2 x 1073, w.=400cm™!, T=298 K. We compare cHAC, Markovian and non-Markovian dynamics.

of the superposed state. As can be expected, the coherence is
more sensitive to the dissipation effect than the populations,
particularly in the non-Markovian case. Note that, after #7, the
dynamics corresponds to a field-free dynamics.

The analysis of the dissipation helps to understand the diffi-
culty to reach the highest yield. Indeed, the OCT procedure has
to optimize two processes: (i) Maximization of the localization
of the wave packet or the density matrix; (ii) Minimization of the
effect of dissipation of the system through the bath modes. The
first process is relatively easy to reach with our 2D-model, as it
has been shown previously [31]. However, it might be more dif-
ficult to fight against the dissipation effect. The following figures
(Figs. 7 and 8) illustrate this point by comparing the field-free

population
1 o
1 I 2D
—&— 245D cHAC
P —&o— 2D NMar
0+,0- —— 2D Mar
----- 2D
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0.4 .
02} h ]
L
LN
it
i
¥ Po-o
O 'l il i | L M - L
0 0.1 0.2 0.3 0.4 0.5
(a) t(ps)

dynamics and the dynamics with the optimal field. The param-
eter, Tr[,oz(t)], is used for the Markovian and non-Markovian
dynamics while the population on the first channel or the par-
tial trace of p over the first channel, Tr[pcp, |, is used for cHAC
dynamics.

For the Markovian and the non-Markovian cases, the field-
free dynamics shows a large diminution of Tr[p2(r)] when the
time increases (see Fig. 7), in particular for the strong dissipa-
tion case A =2 x 1073, w,=100cm™! and T=298 K, Fig. 7b).
However, this diminution is smaller for the dissipative dynamics
with optimal field, which illustrates how the optimal field fights
dissipation to get the highest objective yield. Furthermore, in the
case of the non-Markovian dynamics with the optimal field, the

Ipo.ol
0.5 —r———

04
03

0.2 |-

—2D
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Fig. 6. Evolution of the population po, o, () and po_,o_(¢) (panel a) and of the coherence |po, ,0_(¢)| (panel b) for the 2D case with A =2 x 1073, w,=400cm™!,

T=298K (see Fig. 5).
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Fig. 7. Evolution of the Tr[p?(f)] for field-free dynamics (full line) and for a dynamics with the optimal field (dashed line), (panel a) with A =2 x 1073, w. =400 cm™',

T=298 K; (panel b) for the 2D case with A =2 x 1073, w,=100cm™!, T=298 K.

diminution of Tr[p%(#)] is much smaller than in the case of the
Markovian one. The necessity of taking into account memory
effect is obvious in that case.

We note that the final value of Tr(p?) is always nearly
equal to the value of the objective yield, [Tr(Wp)]* (see
Table 2). At convergence, Tr(D?)~0 where D=p— W, so
one has Tr(p?) ~ —[Tr(W?) — 2Tr(Wp)] which can be recast as
Tr(p?) ~ —[1 — Tr(Wp)]? + [Te(Wp)]?. Since [1 — Tr(Wp)]? can
be neglected if p is close to W, one obtains Tr(,oz) ~ O ;=
[Te(Wo)l*.

1Tr[Pcm]
fielci-free
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Fig. 8. Evolution of the population on the first channel, Tr[ocp, ], for field-free
dynamics (full line) and for dynamics with the optimal field (dashed line), with
A=2x 1073, @, =400cm™".

In the case of the cHAC dynamics, the evolution of Tr[ och, ]
is different. Indeed, the number of bath modes seems insuffi-
cient to produce a strong dissipation. For the field-free dynamics,
the evolution of Tr[ o, ] presents some oscillations with a time
scale equal to 0.05 ps and the average value is around 0.98. For
the dynamics with the optimal field, the evolution of Tr[ocp, ]
decreases and next increases to reach 0.98 which is close to the
objective yield (see Table 2).

5.3.2. Long pulse

Table 3 is devoted to the long pulse case (¢p). These results
may be compared with the STIRAP approach (see Fig. 2).

The cHAC remains very efficient for a long time. Although
the objective yield with the zero-order field is small (around
20%), the convergence is achieved very quickly. Indeed, in one
iteration only, the yield increases up to 97%. On the contrary,
OCT does not achieve high performance and the results are of
the same order of magnitude than those obtained with STIRAP.
Furthermore, the optimization process has almost no effect on
the objective yield. In particular for the Markovian model, the

Table 3

Objective yield O(itc) = [((WH]| p,-,(.(tf)))l2 after different iterations for the long
pulse 1 =4.5 ps

T (K)/Alwe (em™1)

298/2 x 1073/400 100/2 x 1073/400

2+5D* Mar?* N.Mar?* Mar? N.Mar?*
0(0) % 20.7 68.1 57.5 85.2 79.4
o(l) % 974 68.1 58.9 85.2 80.2
O(itc) % 99.4 68.2 67.7 85.3 81.6
itc 10 20 20 20 20

A is the system-bath coupling and w, is the reference frequency of the Ohmic
spectral function (Eq. (7)).
4 Model.
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Table 4
Objective yield O(itc) = | (W' [ pirc(2p))) |2 for the Hadamard gate after different
iterations for the short pulse #; =0.5 ps

T (K)/Mwe (cm™1)

298/5 x 10747400 298/2 x 1073/400

2+5D* Mar?® N.Mar* Mar?® N.Mar?*
0(0) % 93.9 99.6 99.6 94.7 93.7
o(l) % 95.3 99.6 99.6 94.7 93.8
O(itc) % 98.5 99.6 99.6 94.7 94.3
itc 20 20 20 20 20

X is the system-bath coupling and w, is the reference frequency of the Ohmic
spectral function (Eq. (7)).
4 Model.

increase of the yield is only of the order of 0.1%. Note that for
the long pulse, the Markovian dynamics gives slightly a better
objective yield than the non-Markovian one. It was the opposite
for the short pulse (see Table 2).

5.3.3. Hadamard gate
Finally, we have applied OCT to generate the pulse able to
realize the complete Hadamard transformation, Ugap

oo (1) =) (0 2) (8- (i)

Starting from the fundamental state |0.), the pulse local-
izes the wave packet in the left well |L) = (|04+) + [0-) /ﬁ
while starting from the first excited state |0_) the same pulse
localizes it in the right well |R) = (|04 ) — |0_) )/«/5. The zero
order field is the one optimized for one transformation with a
pulse duration # (see Section 5.3.1) and this field is almost
optimal for the Hadamard gate, since the objective yield is
always larger than 90% (see Table 4). For a weak dissipation
(A=5x 10_4, w:.=400 cm~! and T=298 K), the convergence
is almost reached for all dissipative models (cHAC, Markovian
and non-Markovian). For a strong dissipation (A=2 x 1073,
we=400cm~! and T=298 K) the convergence is more difficult
to reach and for the Markovian and non-Markovian models, the
yield has not been improved after 20 iterations.

6. Concluding remarks

In a previous work, we have examined different character-
istics of the laser control in a double or triple well topography
without dissipation and we have shown the advantages and limits
of STIRAP and OCT [31]. The adiabatic approach requires an
intermediary states well decoupled from all the other ones. The
2D bifurcating surface (see Fig. 1) is a good example show-
ing that some transitions from a well to another one cannot
be controlled by STIRAP, for instance the passing from reac-
tant (H3CO) to P or P’. The delocalized states above TS1 are
too strongly coupled by the dipolar momentum. OCT succeeds
in realizing the localization but produces a very complicated
pulse which may be unrealistic. On the contrary the symmet-
ric P and P’ double well offers many transfer pathways, which
facilitates the obtaining of an optimal pulse both by STIRAP

and OCT. In this case, the OCT method reaches a high perfor-
mance with shorter laser pulses than STIRAP. These pulses are in
addition very simple and realistic. One observes that the mecha-
nism found by OCT mainly uses the Stark effect which modifies
the profile of the potential energy surface. Dynamic Stark Con-
trol process has been recently suggested as a promising way to
control reactivity with photonic reagents [82].

Here, we address the problem of the stability of these pre-
vious results against interaction with an environment. We have
shown that even in quite difficult situations in which the envi-
ronment is strongly coupled with the system (high temperature,
low frequency of the bath and non-negligible coupling strength)
laser control with short pulse duration succeeds in creating the
coherence of the Hadamard gate with a good performance index
(of the order of 95%). We have also found a pulse achieving to
full Hadamard transformation with a similar result. The chal-
lenge will be now to implement other transformations and their
concatenations.

Different comments about the laser control can be made. (i)
STIRAP needs long pulses so the control must fight strongly
against dissipation. Fig. 2 shows the difficulty to maintain an
objective yield larger than 90% with increasing coupling. OCT
allows to decrease the pulse duration and therefore to reach the
objective with a high performance. (ii) OCT remains very effi-
cient even for long pulses of the order of those used in STIRAP
in the case of a discrete coupling to few oscillators. But this is
in fact a laser control of a non-open 7D system treated partially
with the harmonic approximation. The objective yield reaches
99.4% in 10 iterations and could be improved. On the con-
trary, the results obtained with Markovian or non-Markovian
dynamics are in agreement with STIRAP results and are not so
good. (iii) For a short pulse, memory effect plays a role. The
non-Markovian approach predicts a more efficient fight against
dissipation but however the discrepancy is not very important.
Markovian and non-Markovian predictions merge when the ref-
erence frequency of the bath w, becomes larger than about
1000cm™!. This frequency corresponds to a correlation time
of about 3 fs, the memory effects are therefore negligible.

Finally, we can conclude that cHAC is a promising way to
increase the number of degrees of freedom when the coupling
with the bath is not too large. Furthermore, we point out that,
the studies using adiabatic separation with two actives degrees of
freedom are unusual. Some recent examples like logical gates on
NHj3 [29] or other small molecules could be explored, mainly
when potential energy surfaces exist. Worth noting, we have
already developed a potential for ammonia for spectroscopic
application and it is particularly well adapted to cHAC [74]. If
no potential is available, cHAC permits easily a modelling with
some oscillators and the results give more confidence in the
success of laser control than the continuous dissipative model.
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Appendix A. Analytical estimations for an adiabatic
control in a Markovian environment

In this appendix, we derive several analytical formulas, which
allow to describe the dynamics of a system coupled to a Marko-
vian bath and controlled by a f-STIRAP strategy. For that
purpose, we follow and we generalize calculations of Ref. [51].
We denote by |1), |2) and |3) the three states involved in the
control. To simplify the notations and to give them a general
character, we write y;; the relaxation coefficient from the state
|i) to the state |) and 7; the sum ) ;;;. The level 3 is coupled
resonantly respectively to the level 1 by the Rabi frequency £2,
and to the level 2 by £2y, (see Sec. 4). We work henceforth in the
basis spanned by the states |1), |2) and |3).

After a RWA approximation, the Hamiltonian of the system
can be written in representation interaction as

0 0 £
0 0 £ (A1)
2. 2, 0

The adiabatic states |g), |+) and |/_) are the eigenstates
of the Hamiltonian with eigenvalues 0, £2 and —2 where 2 =

\/m. Simple algebra leads to

1

Yo = E(Qy|1> — £2,]2))
1

= — (21 + 2,2) + 2

(/ Qﬁ( 1) + £2y12) + £2|3)) (A2)

1
_= ——(2,|1)+ 2,]2) — 213
¥ Qﬁ(|>+ v12) 13))

We use the same adiabatic basis in the presence of dissipation.
Introducing the density matrix p of the system and using Eq.
(A2), the matrix elements of p in the adiabatic basis can be
written as a function of the matrix elements of p in the diabatic
basis. For instance we obtain that

P+ — p—— = é[ﬂx(pla + p31) + £2y(p23 + p32)] (A3)
where the notations can be deduced straightforwardly. Assuming
that the relaxation terms are small as compared to the peak Rabi
frequencies, it can be shown [31] that the off-diagonal terms
00, po_ and py_ of p in the adiabatic basis remains small
and negligible. This assumption is made in order to simplify
the analytical calculations and is checked numerically in Sec.
4. The next step consists in determining the diagonal elements
P++s P—— and poo subject to the relation piy +p0— — + poo=1.
Inverting Eq. (A2), one arrives to the following equations

§2x
P13+ 31 = E(p++ —p__)
(A4)

2,
023 + P32 = 5’(p++ - p—-)

As (9p13/01) = —(1/2)(71 + P3)p13 + 13 and (9p23/0r) =
—(1/2)(52 + 73)p23 + a3 where a3 and a3 correspond to the

terms which do not depend on dissipation, we then have

Pprv - | 2 25
o i 2(V1+7/3) 2(V2+V3)
X (p4+ — p—-) (A5)

There is no contribution from the other terms as in the non-
dissipative limit, p4+4+ and p_ _ are constant in time. We assume
initially, i.e. at r— —o0, that p;(—00)=p_ _(—00)=0. We
deduce from Eq. (AS5) that p;.(f) = p— _(#). To determine pgo,
we use the fact that

P00 _(22 — (2311 + 2ip0 — 2:2yp12 — 2:2yp21)  (A6)

Deriving this expression with respect to the time and neglect-
ing the derivatives of the Rabi frequencies which are assumed
to be small, we obtain
0 1 20

000 < oAl 011

2
= +22 2 00 2 00,

ot ot ot Toot
(A7)

dp22 dp12 dp21 )

The next step consists in using the Schrodinger equation to
replace the terms 0011/0t, 9022/0t, dp12/0t and 9p21/0t by their
expressions in terms of p11, p22 and so on. We have, for instance,
that
dp11

o —P1p11 + Y1222 + V13033 + a1l (A8)

Finally, we express these last terms as a function of pgg, p++
and p_ _ to derive the following equation:

9000

o = A1) + u(®)poo (A9)
where
P SR SV & (A10)
=V, )/13292 J/zszg
and
2 2
w=- ¢ yl—gzyz—mg' 2
22 22 2622 22622
2% | All
+ 94 - E Y12 ( )

As poo(—00)=1, the solution of Eq. (A9) can be written as
follows

t t
poo(t) = / Mu) du + exp {/ u(u)du} (A12)
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